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Abstract

Humans encode natural language (NL) inputs
into knowledge graphs (KG), and conversely,
decode knowledge graphs into natural language
outputs. For instance, the statement, "New York
is one of the most crowded cities in America,"
can be distilled into entity-relation knowledge
as (New York, located in, America) and (New
York, has, large population). Extensive re-
search has been conducted on the interrelation-
ship between NL and KG, focusing on either
synergistic frameworks or translations from one
to the other. In this study, we propose a novel
pretraining approach that conceptualizes NL-
KG-NL as an unsupervised sequential loop
(see in Figure 1) rather than a single lane, akin
to human information processing. Specifically,
a generative model is designed to perform three
functions: 1) extracting a knowledge graph
from natural language (encoding), 2) verbaliz-
ing a knowledge graph to natural language (de-
coding), that forms a continuous and coherent
loop, and 3) recovering the knowledge graph
from incrementally masked tokens (memoriz-
ing). During the unsupervised training phase,
the model aims to minimize two reconstruc-
tion errors through the NL-KG-NL loop and
masked KG. With the proposed approach, the
model 1) clearly exposes an interpretable inter-
mediate stage in pre-training; 2) acquires extra
attention on factual and relational knowledge;
3) requires no text annotation, suitable for low-
resource, customized fields.

1 Introduction

Pretraining large language models (LLMs) on un-
supervised tasks, such as masked token prediction
and next token prediction, has demonstrated re-
markable performance across various downstream
tasks, including natural language understanding
and reasoning (Achiam et al., 2023; Raffel et al.,
2020; Cheng et al., 2023; Sharma et al., 2022; Liu
et al., 2023). This unsupervised pretraining on

web-scale text allows the language model to effec-
tively capture surface-level token correlations, for
example, learning to predict sequences like open
the door rather than open the pencil. Despite ac-
quiring extensive world knowledge from training
texts, the model’s black-box nature remains a sig-
nificant challenge for researchers seeking to inter-
pret and improve on the downstream tasks. Numer-
ous studies have analyzed attention mechanisms
(Hewitt et al., 2023; Von Oswald et al., 2023; Arora
and Goyal, 2023) and neurosymbolic methodolo-
gies (Singh et al., 2023; Liu et al., 2023; Zhang
et al., 2023) to address these issues. In contrast,
our work proposes a novel pretraining framework
— encoding-memorizing-decoding — designed to
imitate human cognitive processes, therefore, en-
hancing the interpretability and controllability of
these LLMs.

An array of work has explored pretraining tasks
in encoder-decoder language models, including the
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020; Chung et al., 2024; Tay et al., 2022) families.
These models are pretrained using unsupervised
tasks such as masked token prediction and next
token prediction. While these pretraining tasks
prove beneficial for downstream tasks like ques-
tion answering, translation, and summarization, re-
searchers continue to face challenges in explaining
how these pretraining tasks facilitate the acquisition
of world knowledge by the models. Furthermore,
the two dominant unsupervised pretraining tasks
do not fully capture the information embedded in
text, such as entities and their relationships, leading
to a suboptimal learning process. To address this,
we propose a novel unsupervised pretraining frame-
work that captures deeper relationships among en-
tities, drawing inspiration from human learning.

Humans learn by distilling new knowledge from
textual inputs and integrating it into their mental
models (Piaget, 1952). For example, given the sen-
tence "New York is one of the most crowded cities
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Figure 1: An example of the NL-KG-NL loop to train a generative model on reconstruction errors. We propose
an encoding-memorizing-decoding pretraining framework that mimics human cognitive process. For information
encoding and decoding, the LM learns to extract graph-based knowledge from textual data and then generates
reconstructed text from the knowledge graph. The objective is to minimize the reconstruction error between the
original text and the reconstructed text. For information memorization, the LM trains using incremental masking on
the entities and relations to accurately reconstruct the original knowledge graph.

in America," a human might first extract two key
pieces of information: (New York, located in, Amer-
ica) and (New York, has, large population). Subse-
quently, this new information can be integrated into
their existing internal knowledge base, which might
already include (New York, is, city) and (America,
is, country), resulting in a refined understanding:
(city — New York, located in, country — America)
and (New York, has, large population). Later, a
human could express this knowledge by construct-
ing a sentence such as "New York is among the
most densely populated cities in the United States."
Our brains process information in a manner like
an hourglass: during encoding, unnecessary sig-
nals are filtered out, with core components stored
as knowledge graphs; during decoding, expressive
formats are added back for communication. In
contrast, current large language models operate by
predicting the next token in a sequence, copying
and pasting natural language text without consider-
ing this hierarchical process as in the human brain.
As a result, the model’s outputs can be challenging
for humans to interpret and control.

Inspired by human learning, we propose a novel
pretraining task for language models that mimics
the hierarchical process of human information pro-
cessing, as illustrated in Figure 1. Our pretrain-
ing framework consists of three stages: encoding,
memorizing, and decoding, each reflecting a funda-
mental cognitive skill of the human brain.

Information Encoding: The language model is
trained to extract knowledge graphs from natural
language text (left).

Information Memorizing: The model attempts
to recover masked knowledge, such as entities and
relations, within the knowledge graph (middle).

Information Decoding: The model verbalizes
the knowledge graph into natural language outputs
(right).

Following this procedure, the language model
is optimized unsupervisedly through two types of
reconstruction errors: NL-KG-NL reconstruction
error during the encoding-decoding phase, and
masked token reconstruction error during the mem-
orizing phase. We evaluate the model’s perfor-
mance across various downstream tasks, including
natural language inference (NLI) and question an-
swering (QA).

Unlike the standard next-token prediction train-
ing task, our method fully leverages the data
through three distinct tasks: encoding as a knowl-
edge graph (KG), memorizing the KG, and decod-
ing it back into natural language (NL). The evalua-
tion results show. ..

In summary, our contributions are two-fold:

1. We propose a novel pretraining framework:
encoding-memorizing-decoding.

2. We evaluate this framework on various down-
stream tasks.

2 Method

This innovative methodology mimics the informa-
tion processing of the human brain. For informa-
tion encoding and decoding, the language model
learns to extract graph-based knowledge from tex-
tual data and then generates reconstructed text from



the knowledge graph. The objective is to minimize
the reconstruction error between the original text
and the reconstructed text. A KL divergence is
added at each step, encoding (forming a knowledge
graph) and decoding (generating the reconstructed
text), to avoid catastrophic forgetting in the pre-
training stage. For information memorization, the
language model trains using incremental masking
on entities and relations to accurately reconstruct
the original knowledge graph.

Encoding: Initially, we incorporate natural lan-
guage text and instruct the language model to ex-
tract knowledge graphs in the form of (subject, rela-
tion, object) tuples. The natural language text , con-
catenated after the natural language-to-knowledge
graph prompt (denoted as NL2KGPrompt +
Text), as input to the encoder, while the decoder
generates the knowledge graph as output. Since this
process involves unsupervised learning, no gold-
standard annotations are required for the extracted
knowledge graphs.

Decoding: We input only the knowledge graph
generated during the encoding phase into the lan-
guage model and instruct it to produce a coherent
textual output. Specifically, we concatenate the
knowledge graph into the prompt, referred to as
KG2NL_Prompt + KG. The decoder then gen-
erates the reconstructed text as the output. Ideally,
the generated output should match the original in-
put in both syntax and semantics, thereby forming a
closed unsupervised loop. In practice, we calculate
the token-level cross-entropy loss between the orig-
inal and reconstructed texts, which serves as the
reconstruction error (Ln;,_ka_nr). To optimize
the two-layer encoder-decoder model, we use ag-
gregated embeddings (logits*embeddings) instead
of argmax logits embeddings as input during the
decoding phase.

Memorization: The knowledge graph is incre-
mentally masked by randomly selecting tokens,
including both entities and relations. The model is
then tasked with predicting the masked tokens, and
the cross-entropy loss of these predictions, denoted
as L, is calculated. The same encoder-decoder
model is used here.

Our objective can be defined as:

L(X) = LNL_KG_NL (Xorigimzla Xreconstructed)
+ Lra(Xka, Xmasked_KG)
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Figure 2: An example of the Encoder-Decoder model
architecture for pretraining NL-KG-NL loop.
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where Ly, ke w1 indicates the reconstruction
error between the input text and the output text,
and Lyig represents the reconstruction error
between the original knowledge graph and the
masked knowledge graph.

3 Implementation

The NL-KG-NL loop pretraining task is imple-
mented on both encoder-decoder architecture and
decoder-only architecture with slightly different
setup.

The encoder-decoder language model is shared
across the encoding, decoding, and memorization
phases 1. In the encoding phase, the model ex-
tracts knowledge graphs from natural language text.
During the decoding phase, it is tasked with ver-
balizing the knowledge graph back into natural
language text. Reconstruction errors are backprop-
agated throughout the encoding-decoding phases.
The same language model is also employed in the
memorization phase to reconstruct masked tokens.

The decoder-only language model takes as input
the natural language text and generates the knowl-
edge graphs in the encoding phase, and vise versa
in the decoding phase. Reconstruction errors are
backpropagated throughout the encoding-decoding
phases only on the inputs part.

4 Data

Our natural language pretraining data include
dataset available on the web, such as Wikipedia,
Wikidata or and dataset that is suitable for extract-
ing knowledge graphs, e.g., HaulEval.

we evaluated on a diversity of validation dataset



and held out dataset. The validation dataset incldu-
ing SQuAD, SQuAD?2.0, HaluEval<doc, sum>.

5 Experiments

We explore an adapter method, such as LoRA,
Adapter Fusion, for efficient pretraining on LLMs.

HaluEval <doc, sum> SQuAD
encoder-decoder model
flan-t5-x1 26/31 90.3/91.3
decoder model Row 3, Col 2 Row 3, Col 3
llama Row 3, Col 2 Row 3, Col 3

Table 1: Evaluation Results on downstream tasks

6 Results
7 Related Work

Knowledge Graph Application: The interre-
lationship between textual data and Knowledge
Graphs (KGs) has been extensively explored by
researchers across various subfields. One such area
involves the construction of KGs from natural lan-
guage (NL) texts (Pan et al., 2024; Kumar et al.,
2020), while another focuses on generating coher-
ent NL texts from KGs (Pan et al., 2024; Ke et al.,
2021). A third area examines the synergistic in-
tegration of both KGs and NL texts in training
language models (LMs) (Shen et al., 2020; Sun
etal., 2021; Yu et al., 2022; Yasunaga et al., 2022).
However, irrespective of the approach, all methods
necessitate a high-quality, KG-text aligned corpus,
which is expensive to obtain. Our approach elim-
inates this requirement and facilitates the model
training by tackling the reconstruction error in ei-
ther format (KG or NL text), while designing the
reconstruction loop incorporating both formats.

Language Model Pretraining: Today’s LLMs
are trained on the task of next token prediction,
P(xnlx1...xn-1), rendering them susceptible to pro-
ducing hallucinations (Pan et al., 2024). In contrast,
our approach goes beyond mere token-level con-
ditional prediction by enhancing LL.Ms through
knowledge-level condition generation. Specifi-
cally, the model is capable of extracting structured
knowledge from a given passage, represented as
P(KGINL), while express in natural language given
a knowledge graph, formulated as P(NLIKG). An-
other emerging training technique for language
models is latent diffusion, in which natural lan-
guage input is incrementally transformed into ran-
dom noise and subsequently reconstructed (Rom-
bach et al., 2022). Compared to this architecture,

our method converts NL into a KG with perturba-
tions and reconstructs the NL from KG then.

8 Experimental Results and Analysis
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