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Abstract

Humans encode natural language (NL) inputs001
into knowledge graphs (KG), and conversely,002
decode knowledge graphs into natural language003
outputs. For instance, the statement, "New York004
is one of the most crowded cities in America,"005
can be distilled into entity-relation knowledge006
as (New York, located in, America) and (New007
York, has, large population). Extensive re-008
search has been conducted on the interrelation-009
ship between NL and KG, focusing on either010
synergistic frameworks or translations from one011
to the other. In this study, we propose a novel012
pretraining approach that conceptualizes NL-013
KG-NL as an unsupervised sequential loop014
(see in Figure 1) rather than a single lane, akin015
to human information processing. Specifically,016
a generative model is designed to perform three017
functions: 1) extracting a knowledge graph018
from natural language (encoding), 2) verbaliz-019
ing a knowledge graph to natural language (de-020
coding), that forms a continuous and coherent021
loop, and 3) recovering the knowledge graph022
from incrementally masked tokens (memoriz-023
ing). During the unsupervised training phase,024
the model aims to minimize two reconstruc-025
tion errors through the NL-KG-NL loop and026
masked KG. With the proposed approach, the027
model 1) clearly exposes an interpretable inter-028
mediate stage in pre-training; 2) acquires extra029
attention on factual and relational knowledge;030
3) requires no text annotation, suitable for low-031
resource, customized fields.032

1 Introduction033

Pretraining large language models (LLMs) on un-034

supervised tasks, such as masked token prediction035

and next token prediction, has demonstrated re-036

markable performance across various downstream037

tasks, including natural language understanding038

and reasoning (Achiam et al., 2023; Raffel et al.,039

2020; Cheng et al., 2023; Sharma et al., 2022; Liu040

et al., 2023). This unsupervised pretraining on041

web-scale text allows the language model to effec- 042

tively capture surface-level token correlations, for 043

example, learning to predict sequences like open 044

the door rather than open the pencil. Despite ac- 045

quiring extensive world knowledge from training 046

texts, the model’s black-box nature remains a sig- 047

nificant challenge for researchers seeking to inter- 048

pret and improve on the downstream tasks. Numer- 049

ous studies have analyzed attention mechanisms 050

(Hewitt et al., 2023; Von Oswald et al., 2023; Arora 051

and Goyal, 2023) and neurosymbolic methodolo- 052

gies (Singh et al., 2023; Liu et al., 2023; Zhang 053

et al., 2023) to address these issues. In contrast, 054

our work proposes a novel pretraining framework 055

— encoding-memorizing-decoding — designed to 056

imitate human cognitive processes, therefore, en- 057

hancing the interpretability and controllability of 058

these LLMs. 059

An array of work has explored pretraining tasks 060

in encoder-decoder language models, including the 061

BART (Lewis et al., 2020) and T5 (Raffel et al., 062

2020; Chung et al., 2024; Tay et al., 2022) families. 063

These models are pretrained using unsupervised 064

tasks such as masked token prediction and next 065

token prediction. While these pretraining tasks 066

prove beneficial for downstream tasks like ques- 067

tion answering, translation, and summarization, re- 068

searchers continue to face challenges in explaining 069

how these pretraining tasks facilitate the acquisition 070

of world knowledge by the models. Furthermore, 071

the two dominant unsupervised pretraining tasks 072

do not fully capture the information embedded in 073

text, such as entities and their relationships, leading 074

to a suboptimal learning process. To address this, 075

we propose a novel unsupervised pretraining frame- 076

work that captures deeper relationships among en- 077

tities, drawing inspiration from human learning. 078

Humans learn by distilling new knowledge from 079

textual inputs and integrating it into their mental 080

models (Piaget, 1952). For example, given the sen- 081

tence "New York is one of the most crowded cities 082
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Figure 1: An example of the NL-KG-NL loop to train a generative model on reconstruction errors. We propose
an encoding-memorizing-decoding pretraining framework that mimics human cognitive process. For information
encoding and decoding, the LM learns to extract graph-based knowledge from textual data and then generates
reconstructed text from the knowledge graph. The objective is to minimize the reconstruction error between the
original text and the reconstructed text. For information memorization, the LM trains using incremental masking on
the entities and relations to accurately reconstruct the original knowledge graph.

in America," a human might first extract two key083

pieces of information: (New York, located in, Amer-084

ica) and (New York, has, large population). Subse-085

quently, this new information can be integrated into086

their existing internal knowledge base, which might087

already include (New York, is, city) and (America,088

is, country), resulting in a refined understanding:089

(city – New York, located in, country – America)090

and (New York, has, large population). Later, a091

human could express this knowledge by construct-092

ing a sentence such as "New York is among the093

most densely populated cities in the United States."094

Our brains process information in a manner like095

an hourglass: during encoding, unnecessary sig-096

nals are filtered out, with core components stored097

as knowledge graphs; during decoding, expressive098

formats are added back for communication. In099

contrast, current large language models operate by100

predicting the next token in a sequence, copying101

and pasting natural language text without consider-102

ing this hierarchical process as in the human brain.103

As a result, the model’s outputs can be challenging104

for humans to interpret and control.105

Inspired by human learning, we propose a novel106

pretraining task for language models that mimics107

the hierarchical process of human information pro-108

cessing, as illustrated in Figure 1. Our pretrain-109

ing framework consists of three stages: encoding,110

memorizing, and decoding, each reflecting a funda-111

mental cognitive skill of the human brain.112

Information Encoding: The language model is113

trained to extract knowledge graphs from natural114

language text (left).115

Information Memorizing: The model attempts 116

to recover masked knowledge, such as entities and 117

relations, within the knowledge graph (middle). 118

Information Decoding: The model verbalizes 119

the knowledge graph into natural language outputs 120

(right). 121

Following this procedure, the language model 122

is optimized unsupervisedly through two types of 123

reconstruction errors: NL-KG-NL reconstruction 124

error during the encoding-decoding phase, and 125

masked token reconstruction error during the mem- 126

orizing phase. We evaluate the model’s perfor- 127

mance across various downstream tasks, including 128

natural language inference (NLI) and question an- 129

swering (QA). 130

Unlike the standard next-token prediction train- 131

ing task, our method fully leverages the data 132

through three distinct tasks: encoding as a knowl- 133

edge graph (KG), memorizing the KG, and decod- 134

ing it back into natural language (NL). The evalua- 135

tion results show. . . 136

In summary, our contributions are two-fold: 137

1. We propose a novel pretraining framework: 138

encoding-memorizing-decoding. 139

2. We evaluate this framework on various down- 140

stream tasks. 141

2 Method 142

This innovative methodology mimics the informa- 143

tion processing of the human brain. For informa- 144

tion encoding and decoding, the language model 145

learns to extract graph-based knowledge from tex- 146

tual data and then generates reconstructed text from 147
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the knowledge graph. The objective is to minimize148

the reconstruction error between the original text149

and the reconstructed text. A KL divergence is150

added at each step, encoding (forming a knowledge151

graph) and decoding (generating the reconstructed152

text), to avoid catastrophic forgetting in the pre-153

training stage. For information memorization, the154

language model trains using incremental masking155

on entities and relations to accurately reconstruct156

the original knowledge graph.157

Encoding: Initially, we incorporate natural lan-158

guage text and instruct the language model to ex-159

tract knowledge graphs in the form of (subject, rela-160

tion, object) tuples. The natural language text , con-161

catenated after the natural language-to-knowledge162

graph prompt (denoted as NL2KGPrompt +163

Text), as input to the encoder, while the decoder164

generates the knowledge graph as output. Since this165

process involves unsupervised learning, no gold-166

standard annotations are required for the extracted167

knowledge graphs.168

Decoding: We input only the knowledge graph169

generated during the encoding phase into the lan-170

guage model and instruct it to produce a coherent171

textual output. Specifically, we concatenate the172

knowledge graph into the prompt, referred to as173

KG2NL_Prompt+KG. The decoder then gen-174

erates the reconstructed text as the output. Ideally,175

the generated output should match the original in-176

put in both syntax and semantics, thereby forming a177

closed unsupervised loop. In practice, we calculate178

the token-level cross-entropy loss between the orig-179

inal and reconstructed texts, which serves as the180

reconstruction error (LNL_KG_NL). To optimize181

the two-layer encoder-decoder model, we use ag-182

gregated embeddings (logits*embeddings) instead183

of argmax logits embeddings as input during the184

decoding phase.185

Memorization: The knowledge graph is incre-186

mentally masked by randomly selecting tokens,187

including both entities and relations. The model is188

then tasked with predicting the masked tokens, and189

the cross-entropy loss of these predictions, denoted190

as LKG, is calculated. The same encoder-decoder191

model is used here.192

193

Our objective can be defined as:194

195

L(X) = LNL_KG_NL(Xoriginal, Xreconstructed)196

+ LKG(XKG, Xmasked_KG)197

Figure 2: An example of the Encoder-Decoder model
architecture for pretraining NL-KG-NL loop.

+KLNL(LMorigXreconstructed, LMtrainedXreconstructed) 198

+KLKG(LMorigXKG, LMtrainedXKG) 199

200

where LNL_KG_NL indicates the reconstruction 201

error between the input text and the output text, 202

and LKG represents the reconstruction error 203

between the original knowledge graph and the 204

masked knowledge graph. 205

3 Implementation 206

The NL-KG-NL loop pretraining task is imple- 207

mented on both encoder-decoder architecture and 208

decoder-only architecture with slightly different 209

setup. 210

The encoder-decoder language model is shared 211

across the encoding, decoding, and memorization 212

phases 1. In the encoding phase, the model ex- 213

tracts knowledge graphs from natural language text. 214

During the decoding phase, it is tasked with ver- 215

balizing the knowledge graph back into natural 216

language text. Reconstruction errors are backprop- 217

agated throughout the encoding-decoding phases. 218

The same language model is also employed in the 219

memorization phase to reconstruct masked tokens. 220

The decoder-only language model takes as input 221

the natural language text and generates the knowl- 222

edge graphs in the encoding phase, and vise versa 223

in the decoding phase. Reconstruction errors are 224

backpropagated throughout the encoding-decoding 225

phases only on the inputs part. 226

4 Data 227

Our natural language pretraining data include 228

dataset available on the web, such as Wikipedia, 229

Wikidata or and dataset that is suitable for extract- 230

ing knowledge graphs, e.g., HaulEval. 231

we evaluated on a diversity of validation dataset 232
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and held out dataset. The validation dataset incldu-233

ing SQuAD, SQuAD2.0, HaluEval<doc, sum>.234

5 Experiments235

We explore an adapter method, such as LoRA,236

Adapter Fusion, for efficient pretraining on LLMs.237

HaluEval <doc, sum> SQuAD
encoder-decoder model

flan-t5-xl 26 / 31 90.3 / 91.3
decoder model Row 3, Col 2 Row 3, Col 3

llama Row 3, Col 2 Row 3, Col 3

Table 1: Evaluation Results on downstream tasks

6 Results238

7 Related Work239

Knowledge Graph Application: The interre-240

lationship between textual data and Knowledge241

Graphs (KGs) has been extensively explored by242

researchers across various subfields. One such area243

involves the construction of KGs from natural lan-244

guage (NL) texts (Pan et al., 2024; Kumar et al.,245

2020), while another focuses on generating coher-246

ent NL texts from KGs (Pan et al., 2024; Ke et al.,247

2021). A third area examines the synergistic in-248

tegration of both KGs and NL texts in training249

language models (LMs) (Shen et al., 2020; Sun250

et al., 2021; Yu et al., 2022; Yasunaga et al., 2022).251

However, irrespective of the approach, all methods252

necessitate a high-quality, KG-text aligned corpus,253

which is expensive to obtain. Our approach elim-254

inates this requirement and facilitates the model255

training by tackling the reconstruction error in ei-256

ther format (KG or NL text), while designing the257

reconstruction loop incorporating both formats.258

Language Model Pretraining: Today’s LLMs259

are trained on the task of next token prediction,260

P(xn|x1...xn-1), rendering them susceptible to pro-261

ducing hallucinations (Pan et al., 2024). In contrast,262

our approach goes beyond mere token-level con-263

ditional prediction by enhancing LLMs through264

knowledge-level condition generation. Specifi-265

cally, the model is capable of extracting structured266

knowledge from a given passage, represented as267

P(KG|NL), while express in natural language given268

a knowledge graph, formulated as P(NL|KG). An-269

other emerging training technique for language270

models is latent diffusion, in which natural lan-271

guage input is incrementally transformed into ran-272

dom noise and subsequently reconstructed (Rom-273

bach et al., 2022). Compared to this architecture,274

our method converts NL into a KG with perturba- 275

tions and reconstructs the NL from KG then. 276

8 Experimental Results and Analysis 277
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