PROC2PDDL: Open-Domain Planning Representations from Texts

Tianyi Zhang* Li Zhang* Zhaoyi Hou Ziyu Wang Yuling Gu Peter Clark Chris Callison-Burch Niket Tandon

University of Pennsylvania Allen Institute for Artificial Intelligence

Task: Natural Language to Symbolic Language (PDDL) Translation

- Comparison of Language Reasoning Approaches:
 - Natural language reasoning using black-box LMs is often unreliable.
 - In contrast, symbolic reasoning with executable code is reliable.
- Motivation:
 - Abundant action descriptions in NL vs. Limited domain actions in PDDL
 - LMs' strong common knowledge + faithful planning ability of PDDL solver

- Previous work:
 - Robotics: infer the domain actions from obtained action-state sequences
 - NLP: generate partial problem states by conditioning on natural language text
- Our work:
 - Automatically generate domain actions from open-domain natural language procedure

Methods: Zone of Proximal Development Scaffolding on Task Skills

Evaluation

Beyond Reach

Zone of Proximal

Development

Current

Ability

Example – action 'get_water'

Input – wikiHow text

Intermediate step –

Find a fresh water source. Go inland and try to find a water source from a stream or waterfall on the island.

Inference

- Approach:
 - zone of proximal development (ZPD) scaffolding dissect the skills:
 entity-state extraction → inference → PDDL translation
 - Chain-of-thought (CoT) prompting dissect the components:
 parameters → precondition → effect
- Evaluation:
 - Intrinsic: comparison with gold domain actions
 - Extrinsic: applying predicted domain actions to solve gold problem files

entity-state extraction and inference
player:
before: Is searching for water. after: Has water in the inventory.
water:
before: At a location with a water source. after: Collected by the player.
location:
<pre>before: Location with a water source. after: Unchanged.</pre>
Output - PDDL
(:action get_water
:parameters (?player – player ?loc –
location ?water - water)
:precondition (has_water_source ?loc) (at
·effect (inventory ?player ?water)

Evaluations: Evident Improvement through Our ZPD Method

		Intrinsic	Extrinsic
Model %	8	action acc.	\mathbb{PF} solve
gpt-3.5		0.2	1.0
gpt-4		15.9	33.7
+ CoT		9.3	21.1
+ ZPD		18.1	35.8
+ ZPD, 3	shot	11.9	23.2
gpt-4o		18.2	37.9
+ CoT		19.5	33.7
+ ZPD		21.4	45.3
+ ZPD, 3	shot	20.3	40.0
gold		100	100
Model %	Parameter	Preconditi	on Effect
gpt-4	36.7	31.1	53.0
+ CoT	29.7	25	54.7
+ ZPD	42.2	29.7	48.1
gpt-4o	45.1	31.1	62.5
+ CoT	52.4	34.2	54.1
+ ZPD	53.5	40.1	53.5

Prompt Instruction:

• **ZPD** is superior to **CoT** both intrinsically and extrinsically

- Few-shot is ineffective due to our task requirements
- Action Generation:
 - Entity-state extraction and inference occasionally miss entities, e.g. implicit tools
 - Translation of predicates is inaccurate sometime
 - Wrong matches for equivalent semantics: e.g. (has_fire ?loc) = (at ?loc ?fire)
 - Inconstant expression of variables: e.g. ?f fruit (variable) , fruit (constant)
 - Precondition is harder to predict than effect (more complex and less obvious predicates)