
PROC2PDDL: Open-Domain Planning Representations from Texts
Tianyi Zhang* Li Zhang* Zhaoyi Hou Ziyu Wang Yuling Gu

Peter Clark Chris Callison-Burch Niket Tandon

University of Pennsylvania Allen Institute for Artificial Intelligence

Task: Natural Language to Symbolic Language (PDDL) Translation

Methods: Zone of Proximal Development Scaffolding on Task Skills

Evaluations: Evident Improvement through Our ZPD Method

• Comparison of Language Reasoning Approaches:
• Natural language reasoning using black-box LMs is often unreliable.
• In contrast, symbolic reasoning with executable code is reliable.

• Motivation:
• Abundant action descriptions in NL vs. Limited domain actions in PDDL
• LMs‘ strong common knowledge + faithful planning ability of PDDL solver

• Previous work:
• Robotics: infer the domain actions from obtained action-state sequences
• NLP: generate partial problem states by conditioning on natural language text

• Our work:
• Automatically generate domain actions from open-domain natural language procedure

• Approach:

• zone of proximal development (ZPD) scaffolding – dissect the skills:

entity-state extraction à inference à PDDL translation

• Chain-of-thought (CoT) prompting – dissect the components:

parameters à precondition à effect

• Evaluation:

• Intrinsic: comparison with gold domain actions

• Extrinsic: applying predicted domain actions to solve gold problem files

• Prompt Instruction:

• ZPD is superior to CoT both intrinsically and extrinsically

• Few-shot is ineffective due to our task requirements

• Action Generation:

• Entity-state extraction and inference occasionally miss entities, e.g. implicit tools

• Translation of predicates is inaccurate sometime

• Wrong matches for equivalent semantics: e.g. (has_fire ?loc) = (at ?loc ?fire)

• Inconstant expression of variables: e.g. ?f - fruit (variable) , fruit (constant)

• Precondition is harder to predict than effect (more complex and less obvious predicates)

Input – wikiHow text

Find a fresh water source. Go inland and try
to find a water source from a stream or
waterfall on the island.

Output - PDDL

(:action get_water
:parameters (?player - player ?loc -

location ?water - water)
:precondition (has_water_source ?loc) (at

?player ?loc)
:effect (inventory ?player ?water)

Intermediate step –
entity-state extraction and inference

player:
before: Is searching for water.
after: Has water in the inventory.

water:
before: At a location with a water source.
after: Collected by the player.

location:
before: Location with a water source.
after: Unchanged.

Example – action ‘get_water’

