
PROC2PDDL: Predicting Domain Definitions
Based on Natural Language for Symbolic Planning

Anonymous EMNLP submission

Abstract
A symbolic planner such as a PDDL solver001
produces an executable and interpretable plan,002
based on a domain file and a problem file. Prior003
work assumes provided domain files, which are004
costly to create in practice. This paper breaks005
the assumption by introducing the domain file006
action prediction problem where preconditions007
and effects of each action are predicted. To-008
wards this, we propose the first dataset con-009
taining open-domain procedural articles from010
wikiHow paired with annotated PDDL repre-011
sentations. We then show that LLMs are capa-012
ble of generating plausible PDDL actions, but013
more than half are incorrect, resulting in fail-014
ure to solve problems. We provide an in-depth015
error analysis of why LLMs fail, and are still016
far lagging behind humans.017

1 Introduction018

Planning is the task of finding a sequence of actions019

to achieve a goal in a given environment (Fikes020

and Nilsson, 1971; LaValle, 2006). For both hu-021

mans and machines, planning is critical for solving022

problems such as math questions, multi-hop rea-023

soning questions, or even high-level problems such024

as cooking, litigation, or policy-making. To assist025

problem-solving for both humans and machines,026

researchers have explored ways to create plans ei-027

ther expressed as natural language (NL) (Sakaguchi028

et al., 2021; Lyu et al., 2021) or symbolic language029

(SL) (Silver et al., 2022; Huang et al., 2022, 2023;030

Lin et al., 2023). SL plans have many advantages031

over NL plans. First, the ambiguous and highly-032

granular nature of NL instructions results in a lack033

of tractability and interpretability, while the pre-034

defined symbolic patterns (e.g., <pick, subject,035

object>) makes SL plans easy to validate, explain,036

and revise. Second, SL plans are necessary for037

machines to execute, while NL plans without any038

grounding fail in this regard.039

In this work, we treat symbolic planning as the040

task of translating procedural text to symbolic rep-041

Domain File

types
- person, item,
locale

predicates
- have, at

actions
- go, get
 - parameters
 - preconiditons
 - effects

Problem File

Entities
- you is-a person
- cookie is-a item
- room is-a locale

Initial States
- at(cookie, room) ...

Goal States
- have(you, cookie) ...

Plan

get(you, cookie)

go(you, room)

PDDL
solver

Figure 1: A PDDL solver produces a plan based on a
minimal domain file and problem file. Previous work
assumes the domain file as given, while we predict the
action definitions in the domain file.

resentations using large language models (LLMs) 042

and create the plan with a symbolic solver. This 043

approach, as opposed to generating SL plans by 044

LLMs directly, has been shown to be more effec- 045

tive and faithful (Lyu et al., 2023; Xie et al., 2023; 046

Liu et al., 2023). Following the past research, we 047

employ PDDL (Planning Domain Definition Lan- 048

guage) (Aeronautiques et al., 1998). PDDL plan- 049

ners require one domain file and at least one prob- 050

lem file (see an example in Figure 1). The domain 051

file describes the universal context and rules of the 052

environment, while the problem file defines the ini- 053

tial and goal states. Given a domain file and a prob- 054

lem file, a PDDL solver will attempt to produce a 055

plan, namely a sequence of actions, to achieve the 056

specified goal states. 057

There has been a growing interest in using LLMs 058

to generate PDDL. Existing work (Lyu et al., 2023; 059

Xie et al., 2023; Liu et al., 2023) assumes the 060

availability of a complete domain file and a par- 061

tial problem file including the initial states, while 062

a model translates a textual query into a PDDL- 063

representation of the goal states. Due to the high 064

cost of creating such domain files, the scope is of- 065

ten closed-domain, such as simulations (Puig et al., 066

2018; Shridhar et al., 2020; Wang et al., 2022; Park 067

et al., 2023). In contrast, we are interested in gen- 068

erating a domain file based on natural language 069

1

Formulation PF prediction
(previous work)

DF-action prediction
(this work)

full DF prediction
(our ongoing work)

PF and DF prediction
(our ongoing work)

Assumes T, DF (H ,A), partial PF T, H , PF for eval T, PF for eval T
Predicts goal states in PF A H , A H , A, PF

Scenario A robot has full access
to an env. and actions.

A robot is in an unfamiliar
env.; does not know how
its actions affect the env.

The env. is ungrounded
with descriptions to
carry out known tasks.

Nothing is grounded;
tasks are undefined.

Difficulty ∗ ∗∗ ∗∗∗ ∗∗∗∗
Well-defined ∗∗∗∗ ∗∗∗ ∗∗ ∗

Table 1: Possible ways of formulating the task of translating NL to PDDL. Previous work assumes the DF and
partial PF, merely predicting the goal states in the PF. In contrast, we predict action definitions in the DF based on
procedural texts.

descriptions of any open-domain environment. See070

Appendix A for a comprehensive comparison with071

related work.072

To this end, we propose a dataset coined073

PROC2PDDL consisting of 27 domain files and074

81 problem files manually annotated based on075

open-domain WikiHow articles. An LLM is then076

provided with textual descriptions along with the077

domain file scaffolding, and predicts the actions078

in the domain file. We experiment on various079

prompt designs, prompting the LLM with different080

level of procedural contexts from whole articles081

to sentence-long summarizations, while consider-082

ing methods such as chain-of-thought (Nye et al.,083

2021). Our evaluation shows that the latest LLMs084

can plan based on our formulation, despite previous085

claims that they cannot (Valmeekam et al., 2022).086

2 Task087

A PDDL example contains a domain file DF and088

one or more problem files PF.089

A DF defines the following elements:090

• a header H , which consists of091

– types of entities (e.g., object, location, player)092

– predicates (e.g., if object is at a location)093

– names of possible actions (e.g., boil water)094

• definitions of actions A, which consist of095

– parameters (e.g., water, pot) as a list of types096

– precondition (e.g., water and pot belongs to097

player; water is not treated) as a conjunctive098

normal form of predicates099

– effect (e.g., water is treated) as a conjunctive100

normal form of predicates101

A PF defines the following elements:102

• objects and their type (e.g., rainwater is water)103

• initial states (e.g., bucket is empty)104

• goal states (e.g., bucket is filled with rainwater;105

rainwater is treated)106

We say that a DF can solve a PF if there exists a107

sequence of actions A1, . . . , An that propels the 108

object states to transition from initial to goal. 109

We are concerned with translating some proce- 110

dural text T to a DF. A successfully generated DF 111

can thus solve PFs defined accordingly. As shown 112

in Table 1, different components of PDDL can be 113

predicted. Among them, we focus on predicting 114

action definitions A in the DF. With the types 115

and predicates H specified, predicted A can be ex- 116

pected to be consistent with the naming convention 117

in the PF, leading to a well-defined evaluation, A 118

typical approach is shown in Figure 2. 119

3 Dataset 120

We propose the PROC2PDDL dataset of 27 dif- 121

ferent T-DF-PFs tuples, drawing procedural texts 122

from WikiHow articles of various topics (see Ap- 123

pendix B). A class of graduate students in a U.S. 124

university with prior knowledge on PDDL are each 125

given a WikiHow article T and annotate a DF and 126

multiple corresponding PFs from the article, each 127

with a gold plan to solve it. Each T consists of step 128

paragraphs that may or may not be used in defining 129

the actions in the DF. Hence, a mapping between 130

actions and steps is also annotated. On average, 131

there are 13.33 defined actions in a DF and 8.07 132

instantiated actions in a gold plan. 133

We partition the 27 examples into a 5:6:16 train- 134

development-test splits. In this work, the train split 135

is unused as all our methods are zero-shot; only the 136

development set is used for error analysis; the test 137

set is strictly held out for evaluation. 138

4 Method 139

To predict action definitions A in DF based on the 140

header H and a wikiHow article T containing steps, 141

we prompt gpt-4-32k in a zero-shot manner (for 142

prompt details and examples, see Appendix C). We 143

divide our approach into three sequential stages: 144

2

Domain File (header)

types
 - person, item

predicates
 - have, at

names of actions
 - go
 - get

LLM

Domain File (complete)

types, predicates, names of actions

actions definitions
- go
 - parameters: person, loc
 - preconditions: not at(person, loc)
 - effects: at(person, loc)
- get
 - parameters: person, item, loc
 - preconditions: at(person, loc), at(item,
loc), not have(person, item)
 - effects: have(person, item)

Gold Domain File

types, predicates,
names of actions

actions definitions

VS.

Problem Files

Problem #1

Problem #2

Inference

Intrinsic Evaluation

Extrinsic Evaluation

PDDL
Solver

Evaluation

NL text

Figure 2: Our approach to the DF-action prediction task. Given types, predicates, and action names in a domain file,
our model predicts action definitions including parameters, preconditions, and effects based on textual descriptions.
The predicted domain file is compared with the gold one, and used to solve the corresponding problem files.

First, Identification of the action relevant steps in145

a wikiHow article.146

Second, Extraction of entities and states from147

those steps. This also needs inference on implicit148

entity states (e.g., a cloth gets wet if soaked).149

Third, Translation of said entity states to PDDL.150

This requires paraphrasing of entity states in NL to151

given predicates in SL (e.g., a cloth getting soaked152

might translate to (submerged ?cloth)).153

We consider the following families of prompts.154

Prompt without text (w/o T) is an ablation base-155

line where the model predicts A solely based on H .156

Naturally, none of the three aforementioned stages157

are involved.158

Prompt with text (w/ T) additionally provides159

the model with four different portions of T, involv-160

ing the three aforementioned stages, as follows:161

(T = all) all steps in a wikiHow article162

(T = rel) relevant steps to all actions in a DF based163

on the annotated mapping in PROC2PDDL164

(e.g., 1. Find fresh water... 2. Collect food...165

7. Set up camp...)166

(T = map) each action mapped with steps based on167

the annotated mapping in PROC2PDDL168

(e.g., clean_water: 1. Find fresh water...)169

(T = sum) one-line summaries of actions annotated170

in PROC2PDDL171

(e.g., clean_water; boil water to clean it)172

The four prompts are increasingly more brief and173

less coherent in supplementary text. The for-174

mer ones demand accurate information extraction,175

while, the later one brings model challenges to infer176

implicit entity states.177

Prompt with text, chain-of-thought (text+CoT)178

explicitly has the model following our proposed179

three stages predict: 1. a summary of the action and180

the result, 2. the needed entities, their states before181

and after the action, 3. their PDDL representation.182

Internal External
Model % action acc. PF solve exact plan

w/o T (baseline) 13.7 26.3 3.2
T =sum 15.9 33.7 4.2
T =sum, CoT 18.1 35.8 6.3
T =map 11.8 13.7 2.1
T =map, CoT 8.9 26.3 1.1
T =rel 11.6 27.4 0.0
T =rel, CoT 12.2 21.1 4.2
T =all 12.1 28.4 0.0
T =all, CoT 12.1 31.6 0.0

Table 2: Performance of the DF-action prediction on
the concatenation of the development and test set of
PROC2PDDL. Metrics include action-wide accuracy,
average edit distance of action definitions, the propor-
tion of PFs that can be solved, and the proportion of
generated plans that exactly match the gold plans.

This form provides the model a scaffold to achieve 183

the task, and makes it more attentive to the entities 184

and changes in entity states, even implicit ones 185

(e.g., a soaking action causes an entity to go from 186

dry to wet). Thus, the model is facilitated to think 187

about the conditions completely. 188

5 Evaluation and Analysis 189

Now that a model generates the parameters, pre- 190

conditions, and effects of actions A, we have a 191

complete DF. We evaluate it in two ways (Fig- 192

ure 2). Intrinsically, we semantically compare 193

the predicted A with the ground-truth provided by 194

our PROC2PDDL and report an action-wide accu- 195

racy, where equivalence of two action definitions 196

does not depend on the naming of variables and 197

the order within conjunctions (see Appendix D). 198

Extrinsically, to measure actions’ coherence, we 199

use a BFS-based PDDL solver1 to attempt to solve 200

1https://github.com/pucrs-automated-planning/
pddl-parser

3

https://github.com/pucrs-automated-planning/pddl-parser
https://github.com/pucrs-automated-planning/pddl-parser

Unsolved Solved

Syntax
Error

Bad
Action

Good
Action

Bad
Plan

Good
Plan

T =sum 3 7 2 0 3
T =all 0 10 0 3 2

Table 3: Statistics of error types on the development set.

ground-truth PFs with the predicted DF and report201

a success rate. An unsolved PF is caused by (1.)202

no plan can be found, or (2.) the solver runs for203

more than 30 seconds, or (3.) the solver returns an204

error (usually a syntax error in generated PDDL).205

5.1 Evaluation206

The results (Intrinsic & Extrinsic) on the dev & test207

set are in Table 2. In w/o text setting, the model al-208

ready has a good knowledge of PDDL syntactically209

and semantically. Using a sentence-long descrip-210

tion for each action provided by PROC2PDDL, the211

model achieves the best performance among all,212

showing a strong deduction ability with the lim-213

ited but precise NL input. In contrast, longer and214

more coherent texts (all/rel/map) lead to worse215

results, indicating its extraction shortage in a long216

context. This shortage is less from extracting rel-217

evant entities (e.g., fish, spear in hunt_fish), but218

more from extracting the relation between actions219

(e.g., make_spear to hunt_fish) which may be ex-220

plicitly expressed in PROC2PDDL annotation. CoT,221

overall, is helpful since it explicitly spells out many222

implicit entities and state changes (see example out-223

puts of w/ and w/o CoT in Appendix C). Thus, the224

improvement is most salient in sum where higher225

inference ability is desired. However, even with226

CoT, there are cases of identified entity states being227

ignored in the translation stage, likely because of228

the task complexity. We also notice CoT leads to229

omitted actions in longer outputs. To emphasize230

the simplicity of the task, and the brevity and coher-231

ence of NL text, an obvious next step is to separate232

our joint model into a two-episode pipeline: first233

summarize action, entity, and states, then translate234

into PDDL.235

5.2 Error Analysis236

To provide deeper insights into model performance,237

we manually inspect the model output of 2 best-238

performing prompts (sum and all) of all 6 exam-239

ples (18 PFs) in the development set. We consider240

the following scenarios.241

Syntax Error Model output may contain illegal242

expressions that cannot be parsed. For example, 243

(inventory ?player (clean ?strips)) is un- 244

acceptable because the arguments to a predicate 245

must be atomic types, not another predicate. 246

Unsolved In case that the predicted DF cannot 247

solve a PF, we identify the first problematic ac- 248

tion that differs with the ground-truth. For exam- 249

ple, if the action cut_plant misses a critical effect 250

of (inventory ?player ?stalk), then other ac- 251

tions such as graft_stalk requiring it cannot be 252

executed. However, at times, there could be false 253

negatives where the predicted action definitions are 254

in fact reasonable, but nonetheless cannot lead to a 255

solution. 256

Solved The predicted DF may solve a PF, but 257

the plan may be different from the gold plan. It is 258

naturally possible that the predicted plan is a fluke 259

made possible by under-specified preconditions or 260

over-exaggerated effects, as well as loopholes in 261

the PF leading to unreasonable shortcuts. For the 262

example in Figure 1, a model could cheat by defin- 263

ing the action get by not requiring the person and 264

object to be in the same location; thus, the pre- 265

dicted plan would unreasonably omit the action go. 266

However, at times, the predicted plan could also be 267

a reasonable alternative. 268

The statistics of these errors made by all prompts 269

on the development set is shown in Table 3. When 270

no solution can be found, true negative is highly 271

likely as the model indeed makes aforementioned 272

mistakes during action prediction. When some 273

solution is found, false positive is still possible 274

as the predicted plan may be unreasonable. See 275

attached materials for a complete error analysis 276

of these examples. Our aforementioned future 277

pipeline that separates summarization and trans- 278

lation would likely mitigate these errors. 279

6 Conclusion 280

We propose PROC2PDDL, the first dataset that pairs 281

procedural texts with annotated PDDL representa- 282

tions. We are the first to attempt open-domain 283

DF-action prediction as a means to symbolic plan- 284

ning with LLMs, transcending previous works’ re- 285

striction of only predicting the goal states in the 286

problem file. We show that state-of-the-art LMs are 287

capable of the task but still have a large room for 288

improvement. This work paves the path for more 289

ambitious settings such as predicting both full PF 290

and DF; leading to a neuro-symbolic automatic 291

planning that is verifiable through a PDDL solver. 292

4

Limitations293

Any planning language, including PDDL that we294

consider in this work, is an approximation of plan-295

ning in the real world and cannot accurately reflect296

its complexity. Due to the consideration for sim-297

plicity in the annotation process, we use the prim-298

itive version of PDDL instead of newer planning299

languages, with restricted expressions and syntax.300

Annotating PROC2PDDL is extremely costly as301

it requires knowledge of PDDL and much effort302

to translate procedural texts to PDDL. Thus, our303

dataset is relatively small with a limited range of304

topics. Due to the highly complex and subjective305

nature of the annotation process, each annotated306

example may reflect idiosyncratic though processes307

and biases of the individual annotator.308

As many similar works, there is a known gap be-309

tween high-level planning such as ours (with high-310

level actions like “boil) and the present robots (with311

low-level motor functions like “move”). However,312

like similar works, we believe our efforts can see313

more practical application in the near future.314

Our modeling efforts so far have mainly con-315

sidered options of zero-shot prompting. There of316

course exists many other approaches even in a few-317

shot setting, such as a big-model-teaches-small-318

model paradigm, that we plan to experiment with319

in the future. Moreover, our evaluation is imperfect320

in that even a well-annotated DF-PF pair might321

have multiple successful plans. Manual inspection322

is still necessary to accurately gauge models.323

Ethics statement324

Does not apply.325

References326

Constructions Aeronautiques, Adele Howe, Craig327
Knoblock, ISI Drew McDermott, Ashwin Ram,328
Manuela Veloso, Daniel Weld, David Wilkins SRI,329
Anthony Barrett, Dave Christianson, et al. 1998.330
Pddl| the planning domain definition language.331
Technical Report, Tech. Rep.332

Richard E Fikes and Nils J Nilsson. 1971. Strips: A new333
approach to the application of theorem proving to334
problem solving. Artificial intelligence, 2(3-4):189–335
208.336

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and337
Igor Mordatch. 2022. Language models as zero-338
shot planners: Extracting actionable knowledge for339
embodied agents. In International Conference on340
Machine Learning, pages 9118–9147. PMLR.341

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, 342
Andy Zeng, Yao Lu, Pete Florence, Igor Mor- 343
datch, Sergey Levine, Karol Hausman, et al. 2023. 344
Grounded decoding: Guiding text generation with 345
grounded models for robot control. arXiv preprint 346
arXiv:2303.00855. 347

Steven M LaValle. 2006. Planning algorithms. Cam- 348
bridge university press. 349

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithvi- 350
raj Ammanabrolu, Faeze Brahman, Shiyu Huang, 351
Chandra Bhagavatula, Yejin Choi, and Xiang Ren. 352
2023. Swiftsage: A generative agent with fast and 353
slow thinking for complex interactive tasks. arXiv 354
preprint arXiv:2305.17390. 355

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 356
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023. 357
Llm+p: Empowering large language models with 358
optimal planning proficiency. 359

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 360
Delip Rao, Eric Wong, Marianna Apidianaki, and 361
Chris Callison-Burch. 2023. Faithful chain-of- 362
thought reasoning. 363

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021. 364
Goal-oriented script construction. In Proceedings 365
of the 14th International Conference on Natural 366
Language Generation, pages 184–200, Aberdeen, 367
Scotland, UK. Association for Computational Lin- 368
guistics. 369

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, 370
Henryk Michalewski, Jacob Austin, David Bieber, 371
David Dohan, Aitor Lewkowycz, Maarten Bosma, 372
David Luan, et al. 2021. Show your work: Scratch- 373
pads for intermediate computation with language 374
models. arXiv preprint arXiv:2112.00114. 375

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, 376
Meredith Ringel Morris, Percy Liang, and Michael S. 377
Bernstein. 2023. Generative agents: Interactive sim- 378
ulacra of human behavior. 379

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, 380
Tingwu Wang, Sanja Fidler, and Antonio Tor- 381
ralba. 2018. Virtualhome: Simulating household 382
activities via programs. In Proceedings of the 383
IEEE Conference on Computer Vision and Pattern 384
Recognition, pages 8494–8502. 385

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan 386
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi. 387
2021. proScript: Partially ordered scripts generation. 388
In Findings of the Association for Computational 389
Linguistics: EMNLP 2021, pages 2138–2149, Punta 390
Cana, Dominican Republic. Association for Compu- 391
tational Linguistics. 392

Mohit Shridhar, Jesse Thomason, Daniel Gordon, 393
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, 394
Luke Zettlemoyer, and Dieter Fox. 2020. Al- 395
fred: A benchmark for interpreting grounded in- 396
structions for everyday tasks. In Proceedings of 397

5

http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
https://aclanthology.org/2021.inlg-1.19
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
https://doi.org/10.18653/v1/2021.findings-emnlp.184

the IEEE/CVF conference on computer vision and398
pattern recognition, pages 10740–10749.399

Tom Silver, Varun Hariprasad, Reece S Shuttle-400
worth, Nishanth Kumar, Tomás Lozano-Pérez, and401
Leslie Pack Kaelbling. 2022. Pddl planning with402
pretrained large language models. In NeurIPS 2022403
Foundation Models for Decision Making Workshop.404

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,405
and Subbarao Kambhampati. 2022. Large language406
models still can’t plan (a benchmark for llms on plan-407
ning and reasoning about change). arXiv preprint408
arXiv:2206.10498.409

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and410
Prithviraj Ammanabrolu. 2022. Scienceworld: Is411
your agent smarter than a 5th grader? arXiv preprint412
arXiv:2203.07540.413

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,414
and Harold Soh. 2023. Translating natural language415
to planning goals with large-language models.416

A Comparison of Related Work417

As discussed extensively before, our work can be418

differentiated with related works in three regards419

(see Table 4) in the context of using LLMs for420

planning.2 First, a family of works focus on gen-421

erating NL plans, where steps are sentences; the422

ungrounded nature of these plans leads to a lack423

of executability and interpretability, as a trade-off424

for NL’s flexibility in open-domain texts. Second,425

another family of works focus on generating SL426

plans directly using LLMs3; the black-box nature427

of LLMs leads to a lack of interpretability and428

faithfulness of how the plan is arrived at. Third, the429

most recent family of works, all contemporaneous,430

do not use LLMs to generate plans, but instead431

translate queries to planning specifications such as432

PF in PDDL. While we identify with the “transla-433

tion” approach, we break out of their assumption434

that the rules of the environment, namely DF, are435

given. In contrast, we translate descriptions of the436

environment, namely procedural texts, to DF, while437

evaluating generated DFs using PFs.438

Additionally, our work may be the first of its439

kind, or at least one of a few, to study open-domain440

symbolic planning, made possible by LLMs.441

2Note that non-LLM methods for planning are historic and
abundant. However, the potency of LLMs has recently been
shown great potential in planning.

3Regardless of whether the output directly resembles some
SL, or the output is some structured NL that is later converted
to SL, the end-goal is the same – to generate SL plans.

B WikiHow Topics 442

create secret society 443

throw an anime party 444

open a coconut 445

calculate pi by throwing frozen hot dogs 446

hack 447

get out of quicksand 448

make a detective kit 449

lock picking 450

make papyrus 451

survive on a desert island 452

survive in the jungle 453

survive a war 454

survive a comet hitting earth 455

survive a nuclear attack 456

survive in the woods 457

survive deserted island 458

survive shark attack 459

survive emp attack 460

C Prompts 461

C.1 Prompt without text (w/o T) 462

Prompt: 463

could you fill out the below pddl actions with the 464

predicates? 465

All fields: parameters, precondition and effect, 466

should have predicates. 467

For each action, do NOT change the name and 468

do NOT drop the action and do NOT add more 469

actions. 470

The output should be in correct pddl format. 471

472

here are the actions I want: 473

<insert_action_names> 474

475

here are the requirements I have: 476

<insert_requirements> 477

478

here are the types I have: 479

<insert_types> 480

481

here are the predicates I have: 482

<insert_predicates> 483

484

Example Completion: 485

(:action clean_water 486

:parameters (?player - human ?water - water) 487

:precondition (inventory ?player ?water) 488

:effect (treated ?water) 489

) 490

6

http://arxiv.org/abs/2302.05128
http://arxiv.org/abs/2302.05128
http://arxiv.org/abs/2302.05128

How to plan Dataset Domain

Ours LM translates to DF WikiHow Open
(Lyu et al., 2023) LM translates to PF SayCan Closed/simulated
(Xie et al., 2023) LM translates to PF Blocksworld, Alfred Closed/simulated
(Liu et al., 2023) LM translates to PF Blocksworld, etc. Closed/simulated
(Huang et al., 2023) LM generates SL plan Tabletop rearrangement Closed/simulated/real-word
(Huang et al., 2022) LM generates SL plan VirtualHome Closed/simulated
(Silver et al., 2022) LM generates SL plan Blocksworld, etc. Closed/simulated
(Valmeekam et al., 2022) LM generates SL plan Blocksworld Closed/simulated
(Lyu et al., 2021) LM generates NL plan WikiHow Open
(Sakaguchi et al., 2021) LM generates NL plan proScript Open

Table 4: Comparison with related works.

C.2 Prompt with text (part/whole)491

Prompt:492

could you fill out the below pddl actions with the493

predicates based on the text?494

All fields: parameters, precondition and effect,495

should have predicates.496

For each action, do NOT change the name and497

do NOT drop the action and do NOT add more498

actions.499

The output should be in correct pddl format.500

501

here are the actions I want:502

<insert_action_names>503

504

here are the requirements I have:505

<insert_requirements>506

507

here are the types I have:508

<insert_types>509

510

here are the predicates I have:511

<insert_predicates>512

513

here are the texts containing steps to <in-514

sert_goal>:515

<insert_text>4516

517

Example Completion:518

(:action clean_water519

:parameters (?player - human ?water - water)520

:precondition (inventory ?player ?water)521

:effect (treated ?water)522

)523

C.3 Prompt with text (pair/desc)524

Prompt:525

could you fill out the below pddl actions with the526

predicates based on the text?527

4bold text is distinguished in different prompts

All fields: parameters, precondition and effect, 528

should have predicates. 529

For each action, do NOT change the name and 530

do NOT drop the action and do NOT add more 531

actions. 532

The output should be in correct pddl format. 533

534

here are the action-text pairs I have to <in- 535

sert_goal>: 536

<insert_action_text_pairs> 537

538

here are the requirements I have: 539

<insert_requirements> 540

541

here are the types I have: 542

<insert_types> 543

544

here are the predicates I have: 545

<insert_predicates> 546

C.4 Prompt with text and CoT (text+CoT) 547

Prompt: 548

could you fill out the below pddl actions with the 549

predicates based on the text? All fields: parameters, 550

precondition and effect, should have predicates. 551

For each action, do NOT change the name and 552

do NOT drop the action and do NOT add more 553

actions and: 554

First, summarize the action in a few sentences 555

based on the text and provide its requirements 556

and its aims if it has. 557

Next, identify ALL the entities involved in 558

the action and describe whether it changed, 559

unchanged, added, removed in the action in 560

natural language. 561

Last, translate it into pddl format. Check all the 562

related entities are in the ’parameters’. 563

564

Please use this output format: 565

7

- action name: ...566

- summarize action: ...567

- what is need to do the action: ...568

- what is the result: ...569

570

- entities:571

- entity name: ...572

- before: ...573

- after: ...574

...575

576

- describe how to match it to pddl relevant577

predicates step by step:578

1. ...579

2. ...580

581

pddl:582

583

here are the actions I want:584

<insert_action_names>585

586

here are the requirements I have:587

<insert_requirements>588

589

here are the types I have:590

<insert_types>591

592

here are the predicates I have:593

<insert_predicates>594

595

here are the texts containing steps to <insert_goal>:596

<insert_text>597

598

Example Completion:599

- action name: clean_water600

- summarize action: The player cleans water in601

their inventory using heat from a fire.602

- what is needed to do the action: The player must603

have untreated water in their inventory and be at a604

location with fire.605

- what is the result: The player has treated water in606

their inventory.607

608

- entities:609

- entity name: player610

- before: Having untreated water in inventory.611

- after: Having treated water in inventory.612

- entity name: water613

- before: Untreated.614

- after: Treated.615

616

- describe how to match it to pddl relevant 617

predicates step by step: 618

1. Check if the player has untreated water in their 619

inventory. 620

2. Check if the player is at a location with a fire. 621

3. Replace untreated water with treated water in 622

the player’s inventory in the effect. 623

624

pddl: 625

(:action clean_water 626

:parameters (?player - human ?loc - location 627

?water - water) 628

:precondition (and (at ?player ?loc) (inventory 629

?player ?water) (not (treated ?water)) (has_fire 630

?loc)) 631

:effect (treated ?water) 632

) 633

634

D Calculating Actions Equivalence 635

The distance between two actions can be divided 636

to two parts: 637

1. The distance between parameters: 638

We don’t need to care about the specific parame- 639

ter names; we only need to consider the param- 640

eter types. For each parameter in Action1, we 641

iterate over the parameter list of Action2 to find 642

the first parameter in Action2 with the same type. 643

We use two hash maps, p1 and p2, to record these 644

two parameters and their corresponding types. 645

We increment the counter by 1, remove that pa- 646

rameter from the parameter list of Action2, and 647

break from the current loop. After the iteration, 648

we obtain the number of matching parameters, 649

n. The distance between parameters can be cal- 650

culated as |number of parameters in Action1 − 651

n|+ |number of parameters in Action2 − n|. 652

2. The distance between preconditions/effects: 653

For each condition in Action1, we iterate over 654

the condition list of Action2. The conditions can 655

only match if they have the same predicate and 656

the same number of parameters. We iterate over 657

the parameters in these conditions and make the 658

following judgments: 659

• If neither of the two current parameters has 660

appeared before (in p1 and p2) and these pa- 661

rameters are not identical, they don’t match. 662

• If the two parameters have different categories, 663

they don’t match. 664

8

• If the two parameters have the same categories665

and don’t have an index, we consider them as666

the same parameter entity and give them the667

same index. We continue the iteration.668

• If the two parameters already have indexes,669

we check if the indexes are equal. If they are670

not equal, they don’t match. Otherwise, we671

continue the iteration.672

• In any other case, they don’t match.673

If all parameters of the two conditions match,674

we increment n by 1. The distance between675

preconditions/effects can be calculated as676

|number of preconditions/effects in Action1 −677

n|+|number of preconditions/effects in Action2−678

n|.679

9

