PROC2PDDL: Predicting Domain Definitions
Based on Natural Language for Symbolic Planning

Anonymous EMNLP submission

Abstract

A symbolic planner such as a PDDL solver
produces an executable and interpretable plan,
based on a domain file and a problem file. Prior
work assumes provided domain files, which are
costly to create in practice. This paper breaks
the assumption by introducing the domain file
action prediction problem where preconditions
and effects of each action are predicted. To-
wards this, we propose the first dataset con-
taining open-domain procedural articles from
wikiHow paired with annotated PDDL repre-
sentations. We then show that LLMs are capa-
ble of generating plausible PDDL actions, but
more than half are incorrect, resulting in fail-
ure to solve problems. We provide an in-depth
error analysis of why LLMs fail, and are still
far lagging behind humans.

1 Introduction

Planning is the task of finding a sequence of actions
to achieve a goal in a given environment (Fikes
and Nilsson, 1971; LaValle, 2006). For both hu-
mans and machines, planning is critical for solving
problems such as math questions, multi-hop rea-
soning questions, or even high-level problems such
as cooking, litigation, or policy-making. To assist
problem-solving for both humans and machines,
researchers have explored ways to create plans ei-
ther expressed as natural language (NL) (Sakaguchi
etal., 2021; Lyu et al., 2021) or symbolic language
(SL) (Silver et al., 2022; Huang et al., 2022, 2023;
Lin et al., 2023). SL plans have many advantages
over NL plans. First, the ambiguous and highly-
granular nature of NL instructions results in a lack
of tractability and interpretability, while the pre-
defined symbolic patterns (e.g., <pick, subject,
object>) makes SL plans easy to validate, explain,
and revise. Second, SL plans are necessary for
machines to execute, while NL plans without any
grounding fail in this regard.

In this work, we treat symbolic planning as the
task of translating procedural text to symbolic rep-

Domain File Problem File
types . SR
- person, item, Entities Plan

- you is-a person
- cookie is-a item
- room is-a locale

locale

predicates :ﬂ:

-% go(you, room)
- have, at

Initial States PDDL .
~ at(cookie, room) ... solver | get(you, cookie)

| —

actions

- go, get
- parameters
- preconiditons
- effects

Goal States
- have(you, cookie) ...

Figure 1: A PDDL solver produces a plan based on a
minimal domain file and problem file. Previous work
assumes the domain file as given, while we predict the
action definitions in the domain file.

resentations using large language models (LLMs)
and create the plan with a symbolic solver. This
approach, as opposed to generating SL plans by
LLMs directly, has been shown to be more effec-
tive and faithful (Lyu et al., 2023; Xie et al., 2023;
Liu et al., 2023). Following the past research, we
employ PDDL (Planning Domain Definition Lan-
guage) (Aeronautiques et al., 1998). PDDL plan-
ners require one domain file and at least one prob-
lem file (see an example in Figure 1). The domain
file describes the universal context and rules of the
environment, while the problem file defines the ini-
tial and goal states. Given a domain file and a prob-
lem file, a PDDL solver will attempt to produce a
plan, namely a sequence of actions, to achieve the
specified goal states.

There has been a growing interest in using LLMs
to generate PDDL. Existing work (Lyu et al., 2023;
Xie et al., 2023; Liu et al., 2023) assumes the
availability of a complete domain file and a par-
tial problem file including the initial states, while
a model translates a textual query into a PDDL-
representation of the goal states. Due to the high
cost of creating such domain files, the scope is of-
ten closed-domain, such as simulations (Puig et al.,
2018; Shridhar et al., 2020; Wang et al., 2022; Park
et al., 2023). In contrast, we are interested in gen-
erating a domain file based on natural language

. PF prediction DDF-action prediction full DF prediction PFF and DF prediction
Formulation
(previous work) (this work) (our ongoing work) (our ongoing work)

Assumes T, DF (H,A), partial PF T, H, PF for eval T, PF for eval T
Predicts goal states in PF A H,A H, A, PF

. A robot has full access A robot is in an unfamiliar The env. 18 upgrounded Nothing is grounded;
Scenario . env.; does not know how with descriptions to

to an env. and actions. . . tasks are undefined.
its actions affect the env. carry out known tasks.

Difficulty * ok Kk sokokok
Well-defined s**x $okk ok *

Table 1: Possible ways of formulating the task of translating NL to PDDL. Previous work assumes the DF and
partial PFF, merely predicting the goal states in the PF. In contrast, we predict action definitions in the DF based on

procedural texts.

descriptions of any open-domain environment. See
Appendix A for a comprehensive comparison with
related work.

To this end, we propose a dataset coined
PROC2PDDL consisting of 27 domain files and
81 problem files manually annotated based on
open-domain WikiHow articles. An LLM is then
provided with textual descriptions along with the
domain file scaffolding, and predicts the actions
in the domain file. We experiment on various
prompt designs, prompting the LLM with different
level of procedural contexts from whole articles
to sentence-long summarizations, while consider-
ing methods such as chain-of-thought (Nye et al.,
2021). Our evaluation shows that the latest LLMs
can plan based on our formulation, despite previous
claims that they cannot (Valmeekam et al., 2022).

2 Task

A PDDL example contains a domain file DF and
one or more problem files PF.
A DF defines the following elements:
* a header H, which consists of
— types of entities (e.g., object, location, player)
— predicates (e.g., if object is at a location)
— names of possible actions (e.g., boil water)
* definitions of actions A, which consist of
— parameters (e.g., water, pot) as a list of types
— precondition (e.g., water and pot belongs to
player; water is not treated) as a conjunctive
normal form of predicates
— effect (e.g., water is treated) as a conjunctive
normal form of predicates
A PF defines the following elements:
* objects and their type (e.g., rainwater is water)
* initial states (e.g., bucket is empty)
 goal states (e.g., bucket is filled with rainwater;
rainwater is treated)
We say that a DIF can solve a PF if there exists a

sequence of actions Ay, ..., A, that propels the
object states to transition from initial to goal.

We are concerned with translating some proce-
dural text T to a DF. A successfully generated DIF
can thus solve PFs defined accordingly. As shown
in Table 1, different components of PDDL can be
predicted. Among them, we focus on predicting
action definitions A in the DF. With the types
and predicates H specified, predicted A can be ex-
pected to be consistent with the naming convention
in the PIF, leading to a well-defined evaluation, A
typical approach is shown in Figure 2.

3 Dataset

We propose the PROC2PDDL dataset of 27 dif-
ferent T-DF-PFs tuples, drawing procedural texts
from WikiHow articles of various topics (see Ap-
pendix B). A class of graduate students in a U.S.
university with prior knowledge on PDDL are each
given a WikiHow article T and annotate a DF and
multiple corresponding PF's from the article, each
with a gold plan to solve it. Each T consists of step
paragraphs that may or may not be used in defining
the actions in the DF. Hence, a mapping between
actions and steps is also annotated. On average,
there are 13.33 defined actions in a DF and 8.07
instantiated actions in a gold plan.

We partition the 27 examples into a 5:6:16 train-
development-test splits. In this work, the train split
is unused as all our methods are zero-shot; only the
development set is used for error analysis; the test
set is strictly held out for evaluation.

4 Method

To predict action definitions A in DIF based on the
header H and a wikiHow article T containing steps,
we prompt gpt-4-32k in a zero-shot manner (for
prompt details and examples, see Appendix C). We
divide our approach into three sequential stages:

Domain File (complete)

E

Domain File (header)
NL text

actions definitions

types “g0

- person, item

predicates v

- have, at : -
names of actions 3 o >

-go LLM

- get

types, predicates, names of actions

Gold Domain File

types, predicates,
H'AN names of actions

______ Lo

Intrinsic Evaluation

______ Lo

Extrinsic Evaluation

actions definitions

Problem Files

@ Problem #1

PDDL Problem #2

Solver
\

Figure 2: Our approach to the DF-action prediction task. Given types, predicates, and action names in a domain file,
our model predicts action definitions including parameters, preconditions, and effects based on textual descriptions.
The predicted domain file is compared with the gold one, and used to solve the corresponding problem files.

First, Identification of the action relevant steps in
a wikiHow article.

Second, Extraction of entities and states from
those steps. This also needs inference on implicit
entity states (e.g., a cloth gets wet if soaked).
Third, Translation of said entity states to PDDL.
This requires paraphrasing of entity states in NL to
given predicates in SL (e.g., a cloth getting soaked
might translate to (submerged ?cloth)).

We consider the following families of prompts.
Prompt without text (w/o T) is an ablation base-
line where the model predicts A solely based on H.
Naturally, none of the three aforementioned stages
are involved.

Prompt with text (w/ T) additionally provides
the model with four different portions of T, involv-
ing the three aforementioned stages, as follows:
(T = all) all steps in a wikiHow article

(T = rel) relevant steps to all actions in a DFF based
on the annotated mapping in PROC2PDDL

(e.g., 1. Find fresh water... 2. Collect food...

7. Set up camp...)

(T = map) each action mapped with steps based on
the annotated mapping in PROC2PDDL

(e.g., clean_water: 1. Find fresh water...)

(T = sum) one-line summaries of actions annotated
in PROC2PDDL

(e.g., clean_water; boil water to clean it)

The four prompts are increasingly more brief and
less coherent in supplementary text. The for-
mer ones demand accurate information extraction,
while, the later one brings model challenges to infer
implicit entity states.

Prompt with text, chain-of-thought (text+CoT)
explicitly has the model following our proposed
three stages predict: 1. a summary of the action and
the result, 2. the needed entities, their states before
and after the action, 3. their PDDL representation.

Internal External
Model % action acc. PPF solve exact plan
w/o T (baseline) 13.7 26.3 32
T =sum 15.9 33.7 4.2
T =sum, CoT 18.1 35.8 6.3
T =map 11.8 13.7 2.1
T =map, CoT 8.9 26.3 1.1
T =rel 11.6 27.4 0.0
T =rel, CoT 12.2 21.1 4.2
T =all 12.1 28.4 0.0
T =all, CoT 12.1 31.6 0.0

Table 2: Performance of the DIF-action prediction on
the concatenation of the development and test set of
PROC2PDDL. Metrics include action-wide accuracy,
average edit distance of action definitions, the propor-
tion of PFs that can be solved, and the proportion of
generated plans that exactly match the gold plans.

This form provides the model a scaffold to achieve
the task, and makes it more attentive to the entities
and changes in entity states, even implicit ones
(e.g., a soaking action causes an entity to go from
dry to wet). Thus, the model is facilitated to think
about the conditions completely.

5 Evaluation and Analysis

Now that a model generates the parameters, pre-
conditions, and effects of actions A, we have a
complete DF. We evaluate it in two ways (Fig-
ure 2). Intrinsically, we semantically compare
the predicted A with the ground-truth provided by
our PROC2PDDL and report an action-wide accu-
racy, where equivalence of two action definitions
does not depend on the naming of variables and
the order within conjunctions (see Appendix D).
Extrinsically, to measure actions’ coherence, we
use a BFS-based PDDL solver! to attempt to solve

]https://github.com/pucrs—automated—planning/
pddl-parser

https://github.com/pucrs-automated-planning/pddl-parser
https://github.com/pucrs-automated-planning/pddl-parser

Unsolved Solved
Syntax Bad Good Bad Good
Error Action Action Plan Plan
T =sum 3 7 2 0 3
T =all 0 10 0 3 2

Table 3: Statistics of error types on the development set.

ground-truth PF's with the predicted DF and report
a success rate. An unsolved PF is caused by (1.)
no plan can be found, or (2.) the solver runs for
more than 30 seconds, or (3.) the solver returns an
error (usually a syntax error in generated PDDL).

5.1 Evaluation

The results (Intrinsic & Extrinsic) on the dev & test
set are in Table 2. In w/o text setting, the model al-
ready has a good knowledge of PDDL syntactically
and semantically. Using a sentence-long descrip-
tion for each action provided by PROC2PDDL, the
model achieves the best performance among all,
showing a strong deduction ability with the lim-
ited but precise NL input. In contrast, longer and
more coherent texts (all/rel/map) lead to worse
results, indicating its extraction shortage in a long
context. This shortage is less from extracting rel-
evant entities (e.g., fish, spear in hunt_fish), but
more from extracting the relation between actions
(e.g., make_spear to hunt_fish) which may be ex-
plicitly expressed in PROC2PDDL annotation. CoT,
overall, is helpful since it explicitly spells out many
implicit entities and state changes (see example out-
puts of w/ and w/o CoT in Appendix C). Thus, the
improvement is most salient in sum where higher
inference ability is desired. However, even with
CoT, there are cases of identified entity states being
ignored in the translation stage, likely because of
the task complexity. We also notice CoT leads to
omitted actions in longer outputs. To emphasize
the simplicity of the task, and the brevity and coher-
ence of NL text, an obvious next step is to separate
our joint model into a two-episode pipeline: first
summarize action, entity, and states, then translate
into PDDL.

5.2 Error Analysis

To provide deeper insights into model performance,
we manually inspect the model output of 2 best-
performing prompts (sum and all) of all 6 exam-
ples (18 PIFs) in the development set. We consider
the following scenarios.

Syntax Error Model output may contain illegal

expressions that cannot be parsed. For example,
(inventory ?player (clean ?strips)) is un-
acceptable because the arguments to a predicate
must be atomic types, not another predicate.
Unsolved In case that the predicted DI cannot
solve a PF, we identify the first problematic ac-
tion that differs with the ground-truth. For exam-
ple, if the action cut_plant misses a critical effect
of (inventory ?player ?stalk), then other ac-
tions such as graft_stalk requiring it cannot be
executed. However, at times, there could be false
negatives where the predicted action definitions are
in fact reasonable, but nonetheless cannot lead to a
solution.

Solved The predicted DF may solve a PF, but
the plan may be different from the gold plan. It is
naturally possible that the predicted plan is a fluke
made possible by under-specified preconditions or
over-exaggerated effects, as well as loopholes in
the PF leading to unreasonable shortcuts. For the
example in Figure 1, a model could cheat by defin-
ing the action get by not requiring the person and
object to be in the same location; thus, the pre-
dicted plan would unreasonably omit the action go.
However, at times, the predicted plan could also be
a reasonable alternative.

The statistics of these errors made by all prompts
on the development set is shown in Table 3. When
no solution can be found, true negative is highly
likely as the model indeed makes aforementioned
mistakes during action prediction. When some
solution is found, false positive is still possible
as the predicted plan may be unreasonable. See
attached materials for a complete error analysis
of these examples. Our aforementioned future
pipeline that separates summarization and trans-
lation would likely mitigate these errors.

6 Conclusion

We propose PROC2PDDL, the first dataset that pairs
procedural texts with annotated PDDL representa-
tions. We are the first to attempt open-domain
DF-action prediction as a means to symbolic plan-
ning with LLMs, transcending previous works’ re-
striction of only predicting the goal states in the
problem file. We show that state-of-the-art LMs are
capable of the task but still have a large room for
improvement. This work paves the path for more
ambitious settings such as predicting both full PF
and DF; leading to a neuro-symbolic automatic
planning that is verifiable through a PDDL solver.

Limitations

Any planning language, including PDDL that we
consider in this work, is an approximation of plan-
ning in the real world and cannot accurately reflect
its complexity. Due to the consideration for sim-
plicity in the annotation process, we use the prim-
itive version of PDDL instead of newer planning
languages, with restricted expressions and syntax.

Annotating PROC2PDDL is extremely costly as
it requires knowledge of PDDL and much effort
to translate procedural texts to PDDL. Thus, our
dataset is relatively small with a limited range of
topics. Due to the highly complex and subjective
nature of the annotation process, each annotated
example may reflect idiosyncratic though processes
and biases of the individual annotator.

As many similar works, there is a known gap be-
tween high-level planning such as ours (with high-
level actions like “boil) and the present robots (with
low-level motor functions like “move”). However,
like similar works, we believe our efforts can see
more practical application in the near future.

Our modeling efforts so far have mainly con-
sidered options of zero-shot prompting. There of
course exists many other approaches even in a few-
shot setting, such as a big-model-teaches-small-
model paradigm, that we plan to experiment with
in the future. Moreover, our evaluation is imperfect
in that even a well-annotated DF-PF pair might
have multiple successful plans. Manual inspection
is still necessary to accurately gauge models.

Ethics statement

Does not apply.

References

Constructions Aeronautiques, Adele Howe, Craig
Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins SRI,
Anthony Barrett, Dave Christianson, et al. 1998.
Pddll the planning domain definition language.
Technical Report, Tech. Rep.

Richard E Fikes and Nils J Nilsson. 1971. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189—
208.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118-9147. PMLR.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-
datch, Sergey Levine, Karol Hausman, et al. 2023.
Grounded decoding: Guiding text generation with
grounded models for robot control. arXiv preprint
arXiv:2303.00855.

Steven M LaValle. 2006. Planning algorithms. Cam-
bridge university press.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithvi-
raj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren.
2023. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. arXiv
preprint arXiv:2305.17390.

Bo Liu, Yugian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.
Llm+p: Empowering large language models with
optimal planning proficiency.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning.

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.
Goal-oriented script construction. In Proceedings
of the 14th International Conference on Natural
Language Generation, pages 184-200, Aberdeen,
Scotland, UK. Association for Computational Lin-
guistics.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. 2018. Virtualhome: Simulating household
activities via programs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 8§494-8502.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138-2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. Al-
fred: A benchmark for interpreting grounded in-
structions for everyday tasks. In Proceedings of

http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2304.11477
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
https://aclanthology.org/2021.inlg-1.19
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
https://doi.org/10.18653/v1/2021.findings-emnlp.184

the IEEE/CVF conference on computer vision and
pattern recognition, pages 10740-10749.

Tom Silver, Varun Hariprasad, Reece S Shuttle-
worth, Nishanth Kumar, Tomas Lozano-Pérez, and
Leslie Pack Kaelbling. 2022. Pddl planning with
pretrained large language models. In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). arXiv preprint
arXiv:2206.10498.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Coté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint
arXiv:2203.07540.

Yagqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong,
and Harold Soh. 2023. Translating natural language
to planning goals with large-language models.

A Comparison of Related Work

As discussed extensively before, our work can be
differentiated with related works in three regards
(see Table 4) in the context of using LLMs for
planning.? First, a family of works focus on gen-
erating NL plans, where steps are sentences; the
ungrounded nature of these plans leads to a lack
of executability and interpretability, as a trade-off
for NL’s flexibility in open-domain texts. Second,
another family of works focus on generating SL
plans directly using LLMs?; the black-box nature
of LLMs leads to a lack of interpretability and
faithfulness of how the plan is arrived at. Third, the
most recent family of works, all contemporaneous,
do not use LLMs to generate plans, but instead
translate queries to planning specifications such as
PF in PDDL. While we identify with the “transla-
tion” approach, we break out of their assumption
that the rules of the environment, namely DF, are
given. In contrast, we translate descriptions of the
environment, namely procedural texts, to DF, while
evaluating generated DFs using PFs.
Additionally, our work may be the first of its
kind, or at least one of a few, to study open-domain
symbolic planning, made possible by LLMs.

Note that non-LLM methods for planning are historic and
abundant. However, the potency of LLMs has recently been
shown great potential in planning.

3Regardless of whether the output directly resembles some
SL, or the output is some structured NL that is later converted
to SL, the end-goal is the same — to generate SL plans.

B WikiHow Topics

create secret society

throw an anime party

open a coconut

calculate pi by throwing frozen hot dogs
hack

get out of quicksand

make a detective kit

lock picking

make papyrus

survive on a desert island
survive in the jungle

survive a war

survive a comet hitting earth
survive a nuclear attack
survive in the woods

survive deserted island
survive shark attack

survive emp attack

C Prompts

C.1 Prompt without text (w/o T)

Prompt:

could you fill out the below pddl actions with the
predicates?

All fields: parameters, precondition and effect,
should have predicates.

For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions.

The output should be in correct pddl format.

here are the actions I want:
<insert_action_names>

here are the requirements I have:
<insert_requirements>

here are the types I have:
<insert_types>

here are the predicates I have:
<insert_predicates>

Example Completion:

(:action clean_water

:parameters (?player - human ?water - water)
:precondition (inventory ?player ?water)
:effect (treated ?water)

)

http://arxiv.org/abs/2302.05128
http://arxiv.org/abs/2302.05128
http://arxiv.org/abs/2302.05128

How to plan Dataset Domain

Ours LM translates to DF WikiHow Open

(Lyu et al., 2023) LM translates to PF SayCan Closed/simulated
(Xie et al., 2023) LM translates to PF Blocksworld, Alfred Closed/simulated
(Liu et al., 2023) LM translates to PF Blocksworld, etc. Closed/simulated
(Huang et al., 2023) LM generates SL plan ~ Tabletop rearrangement Closed/simulated/real-word
(Huang et al., 2022) LM generates SL plan ~ VirtualHome Closed/simulated
(Silver et al., 2022) LM generates SL plan ~ Blocksworld, etc. Closed/simulated
(Valmeekam et al., 2022) LM generates SL plan ~ Blocksworld Closed/simulated
(Lyu et al., 2021) LM generates NL plan ~ WikiHow Open

(Sakaguchi et al., 2021) LM generates NL plan proScript Open

Table 4: Comparison with related works.

C.2 Prompt with text (part/whole)

Prompt:

could you fill out the below pddl actions with the
predicates based on the text?

All fields: parameters, precondition and effect,
should have predicates.

For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions.

The output should be in correct pddl format.

here are the actions I want:
<insert_action_names>

here are the requirements I have:
<insert_requirements>

here are the types I have:
<insert_types>

here are the predicates I have:
<insert_predicates>

here are the texts containing steps to <in-
sert_goal>:
<insert_text>*

Example Completion:

(:action clean_water

:parameters (?player - human ?water - water)
:precondition (inventory ?player ?water)
:effect (treated ?water)

)

C.3 Prompt with text (pair/desc)

Prompt:
could you fill out the below pddl actions with the
predicates based on the text?

“bold text is distinguished in different prompts

All fields: parameters, precondition and effect,
should have predicates.

For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions.

The output should be in correct pddl format.

here are the action-text pairs I have to <in-
sert_goal>:
<insert_action_text_pairs>

here are the requirements I have:
<insert_requirements>

here are the types I have:
<insert_types>

here are the predicates I have:
<insert_predicates>

C.4 Prompt with text and CoT (text+CoT)

Prompt:

could you fill out the below pddl actions with the
predicates based on the text? All fields: parameters,
precondition and effect, should have predicates.
For each action, do NOT change the name and
do NOT drop the action and do NOT add more
actions and:

First, summarize the action in a few sentences
based on the text and provide its requirements
and its aims if it has.

Next, identify ALL the entities involved in
the action and describe whether it changed,
unchanged, added, removed in the action in
natural language.

Last, translate it into pddl format. Check all the
related entities are in the ’parameters’.

Please use this output format:

- action name: ...

- summarize action: ...

- what is need to do the action: ...
- what is the result: ...

- entities:

- entity name: ...
- before: ...

- after: ...

- describe how to match it to pddl relevant
predicates step by step:

1. ..

2. ..

pddl:

here are the actions I want:
<insert_action_names>

here are the requirements I have:
<insert_requirements>

here are the types I have:
<insert_types>

here are the predicates I have:
<insert_predicates>

here are the texts containing steps to <insert_goal>:
<insert_text>

Example Completion:

- action name: clean_water

- summarize action: The player cleans water in
their inventory using heat from a fire.

- what is needed to do the action: The player must
have untreated water in their inventory and be at a
location with fire.

- what is the result: The player has treated water in
their inventory.

- entities:

- entity name: player

- before: Having untreated water in inventory.
- after: Having treated water in inventory.

- entity name: water

- before: Untreated.

- after: Treated.

- describe how to match it to pddl relevant
predicates step by step:

1. Check if the player has untreated water in their
inventory.

2. Check if the player is at a location with a fire.
3. Replace untreated water with treated water in
the player’s inventory in the effect.

pddl:

(:action clean_water

:parameters (?player - human ?loc - location
7water - water)

:precondition (and (at ?player ?loc) (inventory
Iplayer ?water) (not (treated ?water)) (has_fire
?oc))

:effect (treated ?water)

)

D Calculating Actions Equivalence

The distance between two actions can be divided
to two parts:

1. The distance between parameters:

We don’t need to care about the specific parame-
ter names; we only need to consider the param-
eter types. For each parameter in Actionl, we
iterate over the parameter list of Action2 to find
the first parameter in Action2 with the same type.
We use two hash maps, p1 and p2, to record these
two parameters and their corresponding types.
We increment the counter by 1, remove that pa-
rameter from the parameter list of Action2, and
break from the current loop. After the iteration,
we obtain the number of matching parameters,
n. The distance between parameters can be cal-
culated as |number of parameters in Actionl —
n| + |[number of parameters in Action2 — n|.

2. The distance between preconditions/effects:

For each condition in Actionl, we iterate over
the condition list of Action2. The conditions can
only match if they have the same predicate and
the same number of parameters. We iterate over
the parameters in these conditions and make the
following judgments:

* If neither of the two current parameters has
appeared before (in p1 and p2) and these pa-
rameters are not identical, they don’t match.

* If the two parameters have different categories,
they don’t match.

e If the two parameters have the same categories
and don’t have an index, we consider them as
the same parameter entity and give them the
same index. We continue the iteration.

* If the two parameters already have indexes,
we check if the indexes are equal. If they are
not equal, they don’t match. Otherwise, we
continue the iteration.

* In any other case, they don’t match.

If all parameters of the two conditions match,
we increment n by 1. The distance between
preconditions/effects can be calculated as
|[number of preconditions/effects in Actionl —
n|+|number of preconditions/effects in Action2—

