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Self Introduction

e Expertises:
o Education and Cognitive Science (6 years of experience, B.S., M.Ed)

Natural and Symbolic Language Understanding and Reasoning (3 years, MSE)

e Passion and Goal:
o Devise intelligent agents that emulate human understanding and reasoning (in PhD)
to facilitate seamless interaction with humans (PhD and beyond),
that will ultimately enhance human life, e.g. a partner and assistant for the elder.
o Future work:

m [opic: multimodal symbolic knowledge acquisition and application

m Methodology: RL and GNN



Projects Overview

e Generative Symbolic Reasoning for Itinerary Planning (plan, python generation)

o 23 fall - now, independent research, publication [4]: on working and writing

e wikHow2PDDL: Event Entity-State Tracking (robotic plan, text2pddl generation)
o Al2, 23 spring, member & leader, publication [3]: submitted to LREC-Coling 2024

e Human-in-the-loop Event Schema Induction
o DARPA KAIRQOS, 22-23, leader, publication [2]: accepted by ACL Demo 2023

e Event Extraction w/ QA Data Augmentation
o DARPABETTER, 20-22, member, publication [1]: on personal webpage



1.Generative Symbolic Reasoning for Itinerary Planning — Foundation

e Human Symbolic Knowledge can be efficiently represented
in Symbolic Language (e.g. Python)

e Domains of Human Learning: (Bloom, B. S., 1956, 1973)

o

o

o

® Procedures of Human Learning: (Piaget, J., 1952)
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1.Generative Symbolic Reasoning for Itinerary Planning — Methodology

e Agent acquires symbolic knowledge including attraction objects and similar constraint
satisfaction algorithms (e.g. job shop).

e Agent applies it to specific tasks by dynamically generating codes according to user's
requwements (e g., interests, time constraints).
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1.Generative Symbolic Reasoning for Itinerary Planning — Methodology

e Knowledge Acquisition and Application Prompts:
o Clarify the data structure, constraints and goals, a relevant task—
o Generate code and correct it step by step —
o Repeat 3-5 times —

o Choose the most robust and extensible version (succinct, easy to add/remove constraints)
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1.Generative Symbolic Reasoning for Itinerary Planning — Contribution

e vs. Natural Language Reasoning
o Black-box, unfaithful, generic suggestion
e vs. Symbolic Language Reasoning

o Simplistic, fixed to specific questions

e Our Generative Symbolic Reasoning

o Symbolic Acquisition-Application framework is versatile

o Interpretable and controllable, mutable and flexible, personalized suggestion



2.wikHow2PDDL.: Event Entity-State Tracking — Motivation

e Importance:
o PDDL, with its pre- and post-conditions for events, is a useful tool for robot planning

and human causal reasoning.

e Relevant works:
o Robotics: Obtain action-state sequences to infer the underlying domain actions.

o NLP: Condition on natural language text to generate segments of a problem file.

e Our work:

o Automatically convert open-domain natural language procedure (e.g. wikiHow) into

domain actions.



2.wikHow2PDDL.: Event Entity-State Tracking — Methodology

e Approach:

o Zero-shot 3-step proximal development scaffolding
o Entity-State Inference and Translation
e Intuitions:

o Abundant action descriptions in NL vs. Limited domains and actions in PDDL

o LMs' strong common sense knowledge and faithful planning of PDDL
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2.wikHow2PDDL.: Event Entity-State Tracking — Evaluation

e Analysis:

O

Entity-state inference overall is good but translation performance is poor

(e.g. semantic equivalence of existing predicates and natural language expressions)

o Explicit inference on the entity-states benefits the parameters
o Precondition is harder to predict than effect (complex and less obvious)
Intrinsic Extrinsic Model % Parameter [ Precondition  Effect -

Model % action acc. PF solve exact plan gpt—4 36.7 311 53.0
gpt-3.5 0.2 1.0 1.0 gpt-4 + CoT 42.2 29.7 48.1
gpt-4 15.9 33.7 4.2 -
gpt-4 + CoT 18.1 35.8 6.3
gold 100.0 100.0 100.0
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3.Human-in-the-loop Schema Induction — Motivation

e Importance:

o Event schema is essential for understanding complex processes (an outline in a book).

e Difficulties:
o Given its highly structured and complicated nature

It's hard to generate directly by LMs and laborious for humans.

e Contributions:
o Construct a schema in 4 stages from scratch, by leveraging both LM's robust

commonsense knowledge and the precision of human modifications.
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3.Human-in-the-loop Schema Induction — Methodology

e Divide schema generation into 4 stages and in each stage:

o machine generates results — human corrects them — inputs to the next stage
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3.Human-in-the-loop Schema Induction — Methodology

e Design prompts to foster inclusive steps:

o Dissect a schema into 3 stages: Before, Ongoing, After

o Summarize the common components

o Prompt the components guided by a flowchart

Before

Ongoing

Cause / Motivation

Regular Event:
Election

Attack
Disease Outbreak

Y

Plan
Personnel & Fund

Implementation

After

Response

Natural Event:
Disease Outbreak

Attack
Election

»  Society & Authority

Medical treatment

Investigation

Harmless Event:
Election

Attack
Disease Outbreak
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3.Human-in-the-loop Schema Induction — Methodology
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3.Human-in-the-loop Schema Induction — Methodology

e Node Extraction and Merging:
o Extract nodes with SRL: (AOQ, V, A1) tuples +Dependency Parsing or GPT-3

dedicate-79 | policé commit a crime

o Merge nodes with identical or equivalent semantics (VerbNet)

\
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3.Human-in-the-loop Schema Induction — Evaluation

e Analysis:
o strong commonsense knowledge of GPTs
o) human improvements made on auto generations
o —— the time and effort efficiency of our approach
[ EVC | FOD | JOB | MED | MRG
Step Acc 11/12 | 7/8 | 10/10 | 10/10 | 12/12
Node Acc | 13/15 | 10/10 | 11/12 | 12/12 | 12/14
Graph Node
ED 1 0 0 0 0
Graph Edge
ED 8 0 7 3 16
Grouding 1 5,15 | 3110 | 311 | 612 | 912
Success Rate
Self-reported |45 1 g | g3 | 10 | 14
time (min)

EVC:

FOD:

JOB:

MED:
MRG:

Acc:
ED:

Evacuation

Ordering Food in a Restaurant
Finding and Starting a New Job
Obtaining Medical Treatment
Corporate Merger or Acquisition

Accuracy
Editing Distance
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4.Event Extraction w/ QA Data Augmentation — Motivation

e Importance:

o Eventis the backbone of natural language understanding

e Difficulties:

o Human annotation is expensive to obtain

e Other works:
o BIO sequence tagging: multiclass classification lack semantic information sharing

o QA transfer learning: transfer learning data with reduced efficiency

e Our work:

o QA data augmentation: train event models with abundant synthetic in-domain data
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Approach:

4.Event Extraction w/ QA Data Augmentation — Methodology

o Train an AE-QG model (Bert-T5) on domain specific data (ACE)

o Augment unlabeled data (wikiNews QA)

o Human annotations + Augmented QA pairs train a QA model (RoBerta)

Train on QA-ACE-train

v

Answer Extraction -
Predict on wikiNews Question Generation QA-wikiNews

Model

|

|

Train on QA-ACE-train !

and QA-wikiNews :
j QA for

Predict on QA-ACE-test—>» Event Extraction —> Evaluate on QA-ACE-test

1 Model

Text: April 7, 2014, writer Peaches Geldof was
found dead in her home near Wrotham.

AE input: extract answers: April 7, 2014, ...

AE output:
Peaches Geldof <sep> Wrotham <sep>

SRL input: ["April" ... "Peaches", "Geldof"...
"found", "dead"... "Wrotham", "."]

SRL output: ["11:B-TMP"..."11:B-Al", "11:
I-A1"..."[prd]","11:B-A3"... "11:I-LOC",""]

QG input: generate question: ...writer <hl>
Peaches Geldof <hl> was...

prd-aware QG input:
generate question: ...<hl> Peaches Geldof <hl>
was # found # dead...

QG output: Who is killed?

QA input: ...Peache... [SEP] Who is killed?

QA output: Peaches Geldof

18



4.Event Extraction w/ QA Data Augmentation — Evaluation

e Analysis:
o Augmented QA pairs exceed the performance of other QA transfer learning datasets.

o Augmented QA pairs + gold annotations demonstrate superior performance.

QG Model QA Model
Num of Test re- Test re-

Approach Datasetl QA pairs =it Dataset2 sult
Main WikiNews- 00y 60.91 ACE  72.05

finetuned
Test1 WikiNews 8060 47.4-9 ACE 70.07
Test2 SQuAD 87599 52.86 ACE 71.85
Baseline - - - ACE 70.25 _

ACE e 6895 QA pairs for ACE;

Duetal - - - context 72.20 e 6935 QA pairs for ACE-context
Main + Du| " KNeWS lgneh  Is020  |ACE ros4

finetuned context
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